

80 June 2015 ARCHITECTURE+ DESIGN

By virtue of nine skylights which act as informal spill out spaces within the building, the quality of daylight is enhanced in circulation areas as well as classrooms. The increase in passive areas reduces dependency on artificial light and results in a huge saving of electricity and reduction in overall load.

The school has been rated as world's first school serving all grades K-12 to achieve LEED-EB Platinum by USGBC and also rated as 'Highest Rated Green Educational

Building in the World'. The architects have adapted age old Indian architecture techniques to make the building environment-friendly and cost effective. Simple ancient architectural methods have been used to maintain internal conditions in strong summers and cold winters. Innovative and unique approach has been taken up in building facilities contributing hugely to reduce carbon footprints by 50 per cent.

The site is a sustainable one, where all the water used for

irrigation is out of the STP, and by a network of catch basins and harvesting pits the runoff water is restored in ground, and by means of high green cover and canopied walkways there is a control on heat islands.

The efficiency of operation and maintenance in building goes up due to the fact that various different footprints that would have been a major intervention on site are consolidated and layered up into a singular structure. This means lesser circulation, practicability for users, greater efficiency in services and an experience of moving through distinct spaces separated through a landscaped courtyard. 💠

Factfile

Client: Sarla Holdings Pvt Ltd

Design team: Ishwak Singh, Jaskaran Singh (Principal Architects);

Siraj Bania, Neeharika Singh, Prayasha Pattasani, Kawalpreet Singh

Consultants: Fabinteriors (Interior Design), BMSF Design consultants

Pvt Ltd (Structural), Integral Designs (Landscape, Plumbing, Electrical),

Panasea Technologies Pvt Ltd (HVAC)

Contractors: Sun Nirmana

Built-up area: 451341sq ft

Cost of project: Rs 62 crore (approx)

Year of completion: 2011

86 June 2015 ARCHITECTURE+ DESIGN

FIRST FLOOR PLAN

The right and left wings are divided in a modular system and wherever necessary, the modules of a wing get consumed or extend into the adjoining block and even the open space in order to meet the challenging floor space. This phenomenon of overlapping and sharing spaces is

what was used as the conceptual tool called layering.

The mega block presents itself on a plinth in order to scale the large mass and create a split level entry for different users. The lower floors and essentially the basement are cooled by geothermal energy whereas this geothermally cooled air is fed into the TFA units for the entire building.

PART SECTION SHOWING THE VENTILATION SCHEME

Where temperature and due lines meet condensation occurs Cavity wall, complete insulation, winter

Brick outer leaf Insulation Block work inner leaf Plaster Condensation can occur on inside of outer leaf and run down into joints harm the insulation. Exterior insulating render or room ventilation will $h_{\rm c}$

HEAT INSULATION THROUGH CAVITY WALL

NATURAL VENTILATION FOR HIGH-RISE BUILDING (TERMITE MODEL)

SITE PLAN

MEDICAL AREA

The state of the s MIM BASEMENT FLOOR PLAN

- 1. OPEN AIR AMPHITHEATRE
- 2. DINING HALL
- 3. TOILETS/ WET AREA
- 4. BOH/KITCHEN AREA
- 5. SWIMMING POOL 6. INDOOR SPORTS AREA
- 7. STAIRCASE / LIFT
- 8. CIRCULATION AREA

1. OPEN AIR AMPHITHEATRE

- 2. DINING HALL
- 3. TOILETS/ WET AREA 4. BOH/KITCHEN AREA
- 5. LAB
- 6. MEDICAL CENTRE 7. PRIMARY SCHOOL AREA
- 8. SHOP
- 9. CUTOUT
- 10. INDOOR SPORTS AREA
- 11. GYMNASTICS